This article was downloaded by:

On: 26 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

The Electronic Nature of the Aglycone dictates the Drive of the Pseudorotational Equilibrium of the Pentofuranose Moiety in C-Nucleosides

Ingrid Luyten^a; Jasenka Matulic-Adamic^b; Leo Beigelman^b; Jyoti Chattopadhyaya^a
^a Department of Bioorganic Chemistry, University of Uppsala, Uppsala, Sweden ^b Ribozyme Pharmaceuticals Inc, Boulder, Colorado, U.S.A.

To cite this Article Luyten, Ingrid , Matulic-Adamic, Jasenka , Beigelman, Leo and Chattopadhyaya, Jyoti(1998) 'The Electronic Nature of the Aglycone dictates the Drive of the Pseudorotational Equilibrium of the Pentofuranose Moiety in C-Nucleosides', Nucleosides, Nucleotides and Nucleic Acids, 17: 9, 1605-1611

To link to this Article: DOI: 10.1080/07328319808004692 URL: http://dx.doi.org/10.1080/07328319808004692

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

The Electronic Nature of the Aglycone dictates the Drive of the Pseudorotational Equilibrium of the Pentofuranose Moiety in C-Nucleosides

Ingrid Luyten¹, Jasenka Matulic-Adamic², Leo Beigelman² and Jyoti Chattopadhyaya^{1*}

Department of Bioorganic Chemistry, Box 581, Biomedical Centre, University of Uppsala, S-751 23 Uppsala, Sweden

²Ribozyme Pharmaceuticals Inc, 2950 Wilderness Place, Boulder, Colorado 80301, U.S.A (E-maíl: jyoti@bioorgchem.uu.se. Fax: +4618554495]

Abstract: We herein show for the first time that the specific electronic character of a C-aglycone dictates the thermodynamic preference of the two-state $N \rightleftharpoons S$ pseudorotational equilibrium to either N- or S-type sugar. As the electron-deficiency of the C-aglycone increases, a more favourable O4'(n) $\rightarrow \sigma^*(C1'-C(sp2))$ interaction results into anomeric stabilization as indicated by more positive ΔH^o for the drive of the $N \rightleftarrows S$ equilibrium to more N-type sugar conformation with pseudoaxial aglycone. Alternatively, as the C-aglycone becomes more electron-rich, an unfavourable O4'(n) $\rightarrow \sigma^*(C1'-C(sp2))$ interaction results into anomeric destabilization as indicated by more negative ΔH^o for the drive of the $N \rightleftarrows S$ equilibrium to more S-type sugar conformation with pseudoequatorial aglycone.

The unique structural characteristic of C-nucleosides which distinguishes them from the ordinary N-nucleosides is the precense of a carbon to carbon bond instead of a carbon to nitrogen bond between the aglycone and the sugar moieties¹. Many C-nucleosides have been isolated as antibiotics and exhibit anticancer and/or antiviral activity². We have recently shown³u by quantitation of the energetics of pD-dependent $N \rightleftharpoons S$ pseudorotational equilibria of the pentofuranose moiety in C-nucleosides that the strength of the anomeric effect of each C-nucleoside is indeed aglycone-dependent³h and tunable³u depending upon the pD of the medium, due to the change in the aromatic character of its nucleobase. It was not however possible in those work^{3h,u} to show directly how a specific electron-rich or electron-deficient character of a C-aglycone promotes the $N \rightleftharpoons S$ pseudorotational equilibria of the constituent sugar! In this work, through a thermodynamic study of the $N \rightleftharpoons S$ pseudorotational equilibria of the sugar moiety of 9 different C-nucleosides 1 - 9⁴ (note the exact numbering of atoms in the C-aglycones), we unambiguously show that an electron-deficient C-aglycone drives the sugar to the N-type conformation, whereas an electron-rich C-aglycone pushes it to the S-type. Such an unprecedented straight-forward correlation also

LUYTEN ET AL. 1606

shades light, for the first time, on the unique nature of the sugar O4' lonepair participation to the sp2 hybridized C-aglycone system (the anomeric effect).

The anomeric effect (i.e. ΔH° term)³ of C-aglycones on the drive of the two-state N \rightleftharpoons S pseudorotational equilibrium in C-nucleosides consists of two counteracting contributions from (i) the stereoelectronic interaction, which places the aglycone in the pseudoaxial orientation, and (ii) the inherent steric effect of the nucleobase, which opposes the stereoelectronic component of the anomeric effect by its tendency to take up the pseudoequatorial orientation. The signs of the thermodynamic parameters in Table 1 are arbitrarily chosen³ in such a way that the positive values indicate the drive of $N \rightleftharpoons S$ equilibrium to N, whereas the negative values describe the drive toward S.

Base

$$RO$$
 R'
 OR
 R'
 OR
 R'
 OR
 R'
 OR

South sugar (C_3 -endo- C_3 -exo),

with pseudoaxial aglycone Phase angle (P): $0^{\circ} \le P \le 36^{\circ}$;

Puckering amplitude (Ψ_m) : $30^\circ \le \Psi_m \le 46^\circ$

with pseudoequatorial aglycone Phase angle (P): $144^{\circ} \le P \le 190^{\circ}$; Puckering amplitude (Ψ_m) : $30^{\circ} \le \Psi_m \le 46^{\circ}$

We have classified the different C-aglycones in C-nucleosides 1 - 9 into three classes depending upon their electron-rich or electron-deficient character; (i) benzene derivatives, (ii) pyridine derivatives, and (iii) pyrimidine derivatives. We have tried to understand their electronic character by simply understanding the chemical reactivity of these aromatic rings^{5,6} and correlate them with the experimental data on the thermodynamic preference of the N \(\rightarrow \) S equilibrium.

Benzene derivatives (1) - (3)

An examination of Table 1 shows that amongst the benzene derivatives 1 - 3, the preference for the N-type conformation decreases in the following order: $(2)^{4b} (\Delta H^{\circ} = +0.4 \text{ kJ/mol}) > (1)^{4a} (\Delta H^{\circ} = -5.4 \text{ kJ/mol}) >$ $(3)^{4c}$ ($\Delta H^{\circ} = -7.3$ kJ/mol). This decrease of the preference for the N-type sugar conformation as the Caglycone changes from α-naphthyl in 2, to phenyl in 1, and to anilino in 3 can be understood from their inherent aromatic character: A simple comparison of the pKas of phenol (9.99), α-naphthol (9.34) and βnaphthol (9.52) shows that the fused benzene rings in α-naphthol can delocalize the -OH lonepair more efficiently than phenol and β-naphthol. Similarly, a comparison of the basicity of the amino group in aniline (4.59), α-amino naphthalene (3.94) and β-amino naphthalene (4.20) confirms the unique aromatic nature of the fused naphthalene system vis-a-vis benzene. This is mainly owing to the more extensive delocalization of charges in naphthalene that makes α position more reactive than β position; this charge delocalization capability also makes naphthalene more reactive than benzene. Interestingly, this relatively more efficient charge delocalization ability of the α -naphthyl moiety in (2) makes its sugar O4' lonepair (n) to delocalize to the σ^* of the C1'-C(sp²) fragment orbital in the gauche-gauche conformation more effectively than in phenyl in (1) $[n(O4') \rightarrow \sigma^*(C1'-C(sn2))]$ interactions]⁷, thereby driving the sugar to the N-type conformation with the aglycone in the pseudoaxial orientation. This is also consistent with the fact that as the electrondensity in the benzene ring of the anilino moiety in (3) increases compared with phenyl in (1), the delocalization ability of O4' lonepair to the C-aglycone decreases, driving the sugar conformation to the Stype sugar more successfully compared with the C1' phenyl aglycone. This is because the energy difference between the p-type orbital of O4' and the σ^* of C1'-C(sp2) orbital is larger, as well as the overlap of the

	Benzene- derivatives≠				Pyrio deriva	Pyrimidine- derivatives≠			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
ΔH°	-5.4 (0.8)	0.4(0.6)	-7.3 (1.0)	-4.4 (0.6)	0.4 (0.5)	-5.6 (0.9)	-0.1 (0.5)	-1.8 (0.3)	0.6 (0.2)
ΔS°	-8.7 (2.7)	2.7 (1.7)	-13.1(1.0)	-4.4 (2.0)	5.2 (1.7)	-7.4 (2.0)	0.7 (1.7)	-2.0 (1.1)	4.0 (1.1)
-T∆S°	2.6 (0.8)	-0.8 (0.5)	3.9 (0.8)	1.3(0.6)	-1.5 (0.5)	2.2 (0.6)	-0.2 (0.5)	0.4 (0.3)	-1.2 (0.3)
ΔG^{298}	-2.8 (0.5)	-0.4 (0.5)	-3.4 (0.4)	-3.1 (0.4)	-1.1 (0.1)	-3.4 (0.5)	-0.3 (0.2)	-1.4 (0.2)	-0.6 (0.1)
%S ²⁹⁸	76	53	80	78	60	80	53	63	57
Actual	-5.8	0.0	-7.7	4.8	0.0	-6.0	-0.5	-2.2	0.3

Table 1: Dependence of the Thermodynamics of the Two State $N \rightleftharpoons S$ equilibrium upon the Electronic Nature \neq of the C-aglycone.

The ΔH° , -T ΔS° (at 298 K) and ΔG^{298} are in kJ/mol. The standard deviations (σ) are in parentheses. For 8 and 9 , data are taken from ref 3u. \neq In this work, the steric contribution of the substituents in ΔH^{\bullet} could not be dissected because of the unavailability of the corresponding saturated system. *Actual anomeric effect (AE) was obtained by a simple subtraction of the ΔH° of the N \rightleftharpoons S pseudorotational drive of 1-deoxy- β - $\underline{\mathbb{D}}$ -ribopentofuranose (10) (ΔH° = 0.4 kJ/mol)^{3a} from the ΔH° of a specific C-nucleoside.

interacting orbitals is smaller, as the C-aglycone becomes more electron-rich, since the stabilization of the O4'(n) and σ^* (C1'-C(sp2)) interaction is proportional to the square of the overlap between interacting orbitals and is inversely proportional to their energy difference⁷.

(ii) Pyridine derivatives (4) - (7)

In the pyridine series, a comparison of ΔH° of (4)^{4d} (-4.4 kJ/mol) and (6)^{4d} (-5.6 kJ/mol) with ΔH° of (5)^{4c} (0.4 kJ/mol) and (7)^{4e} (-0.1 kJ/mol) clearly shows that the substituent(s) in the pyridine ring as in 4 or 6, respectively, has a comparable influence on $n(O4') \rightarrow \sigma^*(C1'-C(sp2))$ interactions as in the phenyl group in (1). This means that the influence of the electron-withdrawing group at para or meta/para position with respect to the sugar substituent is minimal. It is noteworthy that the effect of the nitrogen in the pyridine ring is

1608 LUYTEN ET AL.

more deactivating at positions 2 or 4 than at position 3 (i.e. the meta position with respect to pyridyl-nitrogen)⁶, which is also clear from the relative rate of proton exchange for deuterium in the methyl groups of 2-, 3- and 4-methylpyridines $(130:1:1810)^{6b}$. This situation however changes dramatically in the pyridine derivatives with electron-withdrawing groups such as 2-fluoro pyridyl as in 5 or 2-pyridone group as in 7 (compared to 4 and 6, respectively). The inductive (-I) effect of these ortho or ortho/meta substituents more effectively promotes the sugar O4' and the σ^* of C1'-C(sp2) interactions because of more favourable orbital overlap as well as their relatively smaller energy difference, which is the driving force of the sugar to adopt a more N-type conformation.

(iii) Pyrimidine derivatives (8) and (9)

The incorporation of the second electron-withdrawing amide function in 7 ($\Delta H^{\circ} = -0.1 \text{ kJ/mol}$) to give 9 ($\Delta H^{\circ} = +0.6 \text{ kJ/mol}$) does not seriously change the relative strength of the anomeric effect. In contrast, the incorporation of the second electron-withdrawing amide function in 6 ($\Delta H^{\circ} = -5.6 \text{ kJ/mol}$) to give 9 ($\Delta H^{\circ} = +0.6 \text{ kJ/mol}$) considerably enhances the strength of the anomeric effect. This is again consistent with the above observation that the introduction of an electron-withdrawing ortho/meta substituent (with respect to sugar) in the pyridine is more important than at the para/meta position (with respect to sugar) to drive the N \rightleftharpoons S conformational equilibrium to the N-type sugar [compare also the ΔH° of (4) with (5), and (6) with (7)]. On the other hand, the drive of the N \rightleftharpoons S equilibrium can be reversed to more S-type conformation by substitution of the amide function in (9) ($\Delta H^{\circ} = +0.6 \text{ kJ/mol}$) at the para/meta position (with respect to sugar) by an electron-donating amidine function to (8) ($\Delta H^{\circ} = -1.8 \text{ kJ/mol}$).

The above examples clearly show that the information of the electronic character of the C-aglycone is indeed transmittable to drive the sugar confomation by altering the energy level of the σ^* orbital of C1'-C_(sp2) bond (E₂) with respect to the energy level of the p orbital (E₁) ($\Delta E = E_2 - E_1$) as well as their orbital overlap (S) potential (Anomeric stabilization $\approx S^2/\Delta E$)⁷.

This is evident from the fact that as the electron-deficiency of the C-aglycone increases, we have a more favourable situation for the orbital overlap between the p orbital of O4' and the σ^* orbital of the C1'-C(sp2) bond, which results into anomeric stabilization as indicated by more positive ΔH° for the drive of the N \rightleftarrows S equilibrium to more N-type sugar conformation with pseudoaxial aglycone. Alternatively, as the C-aglycone becomes more electron-rich, we encounter an unfavourable situation for the orbital overlap between the p orbital of O4' and the σ^* orbital of C1'-C(sp2) bond, which results into anomeric destabilization as indicated by more negative ΔH° for the drive of the N \rightleftarrows S equilibrium to more S-type sugar conformation with pseudoequatorial aglycone.

Thus, this work shows that the ΔE as well as S of the interacting orbitals can indeed be influenced predictably by the nature of electron-deficient or electron-rich character of the C-aglycone.

Finally, the actual strength of the anomeric effect of various C-aglycones in (1) - (9) that promotes the drive of $N \ge S$ equilibrium can however be obtained in a quantitative manner by a simple subtraction of the ΔH^* of the $N \ge S$ pseudorotational drive of 1-deoxy- β -D-ribopentofuranose (10) ($\Delta H^* = 0.4$ kJ/mol)^{3a} from the ΔH^* of a specific C-nucleoside (Table 1), which is shown in the last row of the Table 1.

In summary, we have developed a rational, along with our earlier works³, that how the local structure of a polynucleotide can be governed by the electronic nature of aglycones (in addition to the base-base stacking, hydration, steric effects and inter- and intramolecular H-bonding), which have the unique ability to drive the sugar conformation in a very specific manner. Hence, the knowledge of the electronic nature of modified aglycones is important to understand how a new nucleobase would influence the local structure within a polynucleotide chain in the single-stranded, duplex or in the triplex form, since their conformational stabilities would dictate the success of gene-directed drugs (antisense or antigene therapy).

		1 b	2 ^c	3b	4	5	6	7 b	8	9
J _{1'2'}	278K	7.5	5.3	7.8	7.6	5.9	7.7	5.4	6.4	5.5
	358K	6.9	5.4	6.9	7.0	6.0	7.1	5.5	6.1	5.7
J _{2'3'}	278K	5.4	5.2	5.5	5.4	5.2	5.4	5.2	5.2	5.3
	35 8K	5.6	5.4	5.7	5.6	5.5	5.6	5.3	5.5	5.5
J3'4'	278K	3.7	6.0	3.5	3.6	5.1	3.4	5.5	4.5	5,4
	358K	4.4	6.1	4.3	4.1	5.2	4.2	5.6	4.9	5.3

Table 2. The temperature-dependent vicinal coupling constants (Hz) of 1 - 9a.

^a error \pm 0.1 Hz. Only $^3J_{HH}$ at the lowest and the highest temperature are tabulated, whereas they are available at several intermediate temperatures in 10 K steps. Note that the complete set of $^3J_{HH}$ between 278 and 358 K have been used in the calculation of thermodynamic quantities through pseudorotational analyses and van't Hoff plots. Tabulated coupling constants are the result of simulation and iteration procedure by DAISY program. ⁸ b $^3J_{HH}$ for 1, 3 and 7 could not be determined above 348 K because the signals for H2' and H3'were buried under the watersignal. c $^3J_{HH}$ for 2 could not be determined above 338 K because the signals for H2' and H3' were buried under the watersignal.

Experimental Section

(A) ¹H-NMR spectroscopy

The C-nucleosides 1 - 9 were prepared using literature preocedures⁴. ¹H-NMR spectra were recorded at 500 MHz (Bruker DRX 500) in D_2O solution [1 mM for all compounds, $\delta_{CH_3CN}=2.00$ ppm as internal reference] between 278 K and 358 K at 10 K intervals. All spectra have been recorded using 64K data points and 32 scans. The accurate $^3J_{HH}$ (\pm 0.1 Hz) (Table 2) were obtained through simulation and iteration using DAISY program package⁸ and have been used for the pseudorotational analyses.

(B) Conformational analysis with PSEUROT

The generalized Karplus equation 9b,c used in the PSEUROT^{9,10} program links coupling constants between vicinal protons to corresponding proton-proton torsion angles. The following λ substituent parameters were used for the substituents on H-C-C-H fragments: $\lambda(C1') = \lambda(C3') = \lambda(C4') = \lambda(C2') = 0.62$; $\lambda(C5') = 0.68$; $\lambda(O4') = 1.27$; $\lambda(OH) = 1.26$ and $\lambda(C-aglycone) = 0.45^{9c}$. The PSEUROT analyses of temperature dependent ³J_{HH} (278 K - 358 K, Table 2) of the sugar moieties of 1 - 9 were performed in either one or two steps in order to carefully examine the conformational hyperspace accessible to the N and S conformers; (i) $\Psi_m(N)$ and $\Psi_m(S)$ were assumed to be identical and they were kept fixed during the PSEUROT calculations, while PN and PS were optimized freely. (ii) When either the N-type or the S-type conformer is preferred by more than 65%, the geometry of the minor conformer was fixed while P and Ψ_m of the major conformer were optimized freely. Typically 5-10 separate PSEUROT calculations were performed in step (i) and 10 calculations in step (ii). To incorporate the error in the coupling constants ($\sigma = 0.1 \text{ Hz}$), 1000 sets of randomly varied coupling constants (gaussian distribution) were generated and analyzed with a locally modified¹¹ version of the PSEUROT program¹⁰ (Table 3 and the legend for specific description of the conformational spaces covered by the analyses). Typically, a total of 5000-20000 individual pseudorotational analyses were performed for each compound 1 - 9. Some of the results were discarded due to (i) too large difference between a J_{calc} and J_{exp} ($\Delta J_{max} = 0.5$ Hz), (ii) too large overall rms in J_{HH} $(rms_{max} = 0.3 \text{ Hz})$, (iii) $P_N < -40^{\circ}$ or $P_N > 40^{\circ}$, (iv) $P_S < 100^{\circ}$ or $P_S > 180^{\circ}$, or (v) $\Psi_m < 30^{\circ}$ or $\Psi_m > 45^{\circ}$ (see legend of Table 3). The total number of pseudorotational results that were used in the subsequent calculations of thermodynamic parameters is given in column 2 of Table 3. The mole fractions from the accepted pseudorotational analyses were used to construct van't Hoff plots. The averages of the slopes and

LUYTEN ET AL. 1610

the intercepts (Table 3) from the 3000-20000 van't Hoff plots were used to calculate ΔH° and ΔS° (and their errors) of the $N \supseteq S$ sugar equilibrium of 1 - 9 (Table 3).

The free-energy ΔG^{298} values were calculated in two ways: (i) By taking the sum of ΔH° and $-T\Delta S^{\circ}$. The standard deviation of ΔG^{298} is derived from the standard deviations of the ΔH° and $-T\Delta S^{\circ}$ values by the formula $\sigma = (\sigma_{\Delta H}^2 + \sigma_{-T\Delta S}^2)^{1/2}$ which gives a rather high error for ΔG^{298} because of the error propagation (and amplification) by the multistep procedure. (ii) From the average of the 3000-20000 individual ln(xs/ (1 - x_S)) at 298K. This we refer to as $\ln_{av}(x_S / (1 - x_S))$ with its standard deviation $[\sigma \ln_{av}(x_S / (1 - x_S))]$. The free energies at 298 K, obtained by using the formula ΔG^{298} = -R * 0.298 * $\ln_{av}(x_S / (1 - x_S))$, are presented in the last column of Tables 3 with their corresponding standard deviations in parentheses. The error of ΔG^{298} is then directly calculated using the formula $\sigma_{\Delta G^{298}}$ = -R * 0.298 * $\sigma_{ln_{av}}(x_S / (1 - x_S))$, which is smaller compared to the one obtained with the first method. However, the value of ΔG^{298} is not changed compared to the first appraoch.

Acknowledgements

We thank the Swedish Board for Technical Development and Swedish Natural Science Research (NFR) Council, Swedish Board for Technical Development (NUTEK), Sweden and the D. Collen Research foundation, Belgium for generous financial support. Thanks are due to the Wallenbergstiftelsen, Forskningsrådsnämnden, and University of Uppsala for funds for the purchase of 500 and 600 MHz Bruker DRX NMR spectrometers.

References

(a) Cortese, R.; Kammen, H. O.; Spengler, S. J. and Ames, B. N. J. Biol. Chem. 1974, 249, 1103. (b)

(a) Cortese, R.; Kammen, H. O.; Spengler, S. J. and Ames, B. N. J. Biol. Chem. 1974, 249, 1103. (b) Samuelsson, T.; Boren, T.; Johansen, T. I. and Lustig, F. J. Biol. Chem. 1988, 263, 13692. (a) Suhadolnik, R. J. Nucleoside Antibiotics, Wiley-Interscience, New York 1970; Nucleosides as Biochemical Probes, Wiley-Interscience, New York 1979; Townsened L. B. in Handbook of Biochemistry and Molecular Biology, 3rd ed., (Fasman G. D. ed.), Vol. 1, p 271, CRC Press, Columbus, Ohio 1975 (b) Hanessian, S. and Pernet, A. G. Adv. Carbohydr. Chem. Biochem. 1976, 33, 111. (c) Daves, G. D. and Cheng, C. C. Prog. Med. Chem. 1976, 13, 303. (d) Buchanan J. G. Forsch. Chem. Org. Naturst. 1983, 44 243. (e) Hacksell, U. and Daves, G. D. Prog. Med. Chem. 1985, 22, 1. (f) There are other types of C-glycosyl natural products in which the achievems are not pitrogules. Some of these C. glycosyl compounds have 2. products in which the aglycons are not nitrogen heterocycles. Some of these C-glycosyl compounds have

- products in which the aglycons are not nitrogen heterocycles. Some of these C-glycosyl compounds have shown anticancer activity. Daves G. D. Acc. Chem. Res. 1990, 23, 201.

 (a) Plavec, J.; Tong, W.; Chattopadhyaya, J. J. Am. Chem. Soc. 1993, 115, 9734. (b) Plavec, J.; Garg, N.; Chattopadhyaya, J. J. Chem. Soc., Chem. Commun. 1993, 1011. (c) Plavec, J.; Koole, L. H.; Chattopadhyaya, J. J. Biochem. Biophys. Meth. 1992, 25, 253. (d) Koole, L. H.; Buck, H. M.; Nyilas, A.; Chattopadhyaya, J. Can J. Chem. 1987, 65, 2089. (e) Koole, L. H.; Buck, H. M.; Bazin, H.; Chattopadhyaya, J. Tetrahedron 1987, 43, 2289. (f) Koole, L. H.; Plavec, J.; Liu, H.; Vincent, B. R.; Dyson, M. R.; Coe, P. L.; Walker, R. T.; Hardy, G. W.; Rahim, S. G.; Chattopadhyaya, J. J. Am. Chem. Soc., 1992, 114, 9934. (g) Plavec, J.; Thibaudeau, C.; Viswanadham, G.; Sund, C.; Chattopadhyaya, J. J. Chem. Soc., Chem. Comm. 1994, 781. (h) Thibaudeau, C.; Plavec, J.; Watanabe, K. A.; Chattopadhyaya, J. J. Chem. Soc., Chem. Comm. 1994, 537. (i) Thibaudeau, C.; Plavec, J.; Garg, N.; Parchikhin, A.; Chattopadhyava, J. J. Am. Chem. Soc. 1994, 116, 4038. (i) Plavec, J.; Plavec, J.; Garg, N.; Parchikhin, A.; Chattopadhyava, J. J. Am. Chem. Soc. 1994, 116, 4038. (i) Plavec, J.; Plavec, Plavec, J.; Garg, N.; Papchikhin, A.; Chattopadhyaya, J. J. Am. Chem. Soc. 1994, 116, 4038. (j) Plavec, J.; Thibaudeau, C.; Chattopadhyaya, J. J. Am. Chem. Soc. 1994, 116, 6558. (k) Thibaudeau, C.; Plavec, J.; Chattopadhyaya, J. J. Am. Chem. Soc. 1994, 116, 8033. (m) J. Plavec Ph.D. Thesis, Department of Bioorganic Chattopadnyaya, J. J. Am. Chem. Soc. 1994, 716, 8033. (m) J. Plavec Ph.D. Thesis, Department of Bioorganic Chemistry, Uppsala University, Sweden, 1995. (n) Plavec, J.; Thibaudeau, C.; Chattopadhyaya, J. Tetrahedron 1995, 51, 11775. (p) Thibaudeau, C.; Plavec, J. and Chattopadhyaya, J. J. Org. Chem. 1996, 61, 266. (q) Chattopadhyaya, J. Nucl. Acids Symposium Series 1996, 35, 111. (r) Plavec, J.; Thibaudeau, C. and Chattopadhyaya, J. Pure and Applied Chemistry, 1996, 68, 2137. (s) Thibaudeau, C. and Chattopadhyaya, J. J. Org. Chem., 1996, submitted. (u) Luyten, I.; Thibaudeau, C. and Chattopadhyaya, J. Tetrahedron, 1997, in press. (a) Matulic-Adamic, J.; Beigelman, L.; Portman, S.; Egli, M. and Usman, N. J. Org. Chem. 1996, 61, 3909. (b) Matulic-Adamic, J.; Karneisky, A. M.; Gonzales, C.; Burgin, A. M.; Ilsman, N.; McSwiggen, J. A. and
- Matulic-Adamic, J.; Karpeisky, A. M.; Gonzales, C.; Burgin, A. M.; Usman, N.; McSwiggen, J. A. and Beigelman, L. Collection of Czech. Chem. Comm. 1996, 61, S271. (c) Matulic-Adamic, J. and Beigelman, L. Tetrahedron, 1996, 37, 6973. (d) Matulic-Adamic, J. and Beigelman, L. Tetrahedron, 1997, 38, 1669. (e) Matulic-Adamic, J. and Beigelman, L. Tetrahedron, 1997, 38, 203.
- March, J. Advanced Organic Chemistry, Reactions, Mechanism and Structure, 4th ed., Wiley-Interscience, 5. New York 1992.
- 6. (a) Acheson, R. M. An Introduction to the Chemistry of Heterocyclic Compounds, Wiley-Interscience, New York 1976. (b) Parkam, W. E. and Olsen, P. E., Tetrahedron 1973, 4783.
- 7. Pinto, B. M. and Leung, R. Y. N. in The Anomeric Effect and Associated Stereoelectronic Effects, Ed. Thatcher, G. R. J., Am. Chem. Soc., Washington, DC 1993, p 126.
- DAISY, Spin Simulation Program, provided by Bruker, was used with 7 spins systems.

Downloaded At: 14:37 26 January 2011

- (a) De Leeuw, F. A. A. M. and Altona, C. J. Comp. Chem. 1983, 4, 428 and PSEUROT, QCPE program No 463. (b) Diez, E.; Fabian, J. S.; Guilleme, J.; Altona, C. and Donders, L.A. Mol. Phys. 1989, 68, 49. (c) Donders, L. A.; de Leeuw, F. A. A. M. and Altona, C. Magn. Reson. Chem. 1989, 27, 556. (d) Altona, C.; Ippel, J.H.; Hoekzema, A. J. A. W.; Erkelens, C.; Groesbeek, G.; Donders, L.A. Magn. Res. Chem. 1989, 27, 564. 3
- (e) Altona, C., Francke, R., de Haan, R, Ippel, J.H., Daalmans, G.J., Westra, Hoekzema, A. J. A. and van Wijk, J. Magn. Res. Chem. 1994, 32, 670.

 Altona, C.; Sundaralingam, M. J. Am. Chem. Soc. 1972, 94, 8205; ibid 1973, 95, 233..

 Our modification of the PSEUROT v.5.4 program (ref 8) is intended to make it possible to evaluate and assess the propagation of errors from the experimental J_{HH} throughout the PSEUROT calculations as well as throughout subsequent treatment of the obtained data. Our modified program has retained all features of the original PSEUROT program, all changes are additions. The estimated error, expressed as standard deviation (o), for each JHH is entered to the program as well as the desired number of sets of randomly varied JHHs to be generated and subsequently analyzed by pseudorotational analyses. Typically, 1000 data sets are generated and individually analyzed. Each set of 'experimental data' will contain randomly varied JHHs but over all the data scts, each J_{HH} is normally distributed around its experimental value with the given σ . The output from our modified program consists of statistical data (average, σ and skew of the calculated geometrical parameters and mole fractions as well as of the generated JHHs) and results from all the individual pseudorotational analyses (the calculated geometrical parameters and mole fractions). It is also possible to discard results which fall outside given ranges (J_{calc} - J_{exp} , rms in J_{HH} , P_N , P_S , $\Psi_m(N)$ and $\Psi_m(S)$).